Noncrossing Partitions in Surprising Locations
نویسندگان
چکیده
منابع مشابه
Noncrossing Partitions in Surprising Locations
Certain mathematical structures make a habit of reoccuring in the most diverse list of settings. Some obvious examples exhibiting this intrusive type of behavior include the Fibonacci numbers, the Catalan numbers, the quaternions, and the modular group. In this article, the focus is on a lesser known example: the noncrossing partition lattice. The focus of the article is a gentle introduction t...
متن کاملON k-NONCROSSING PARTITIONS
In this paper we prove a duality between k-noncrossing partitions over [n] = {1, . . . , n} and k-noncrossing braids over [n − 1]. This duality is derived directly via (generalized) vacillating tableaux which are in correspondence to tangled-diagrams [6]. We give a combinatorial interpretation of the bijection in terms of the contraction of arcs of tangled-diagrams. Furthermore it induces by re...
متن کاملNoncrossing partitions with fixed points
The noncrossing partitions with each of their blocks containing a given element are introduced and studied. The enumeration of these partitions is described through a polynomial of several variables which is proved to satisfy a recursive formula. It is shown that each variable increased by one is a factor of this polynomial.
متن کاملOn Trees and Noncrossing Partitions
We give a simple and natural proof of (an extension of) the identity P (k, l, n) = P2(k − 1, l − 1, n − 1). The number P (k, l, n) counts noncrossing partitions of {1, 2, . . . , l} into n parts such that no part contains two numbers x and y, 0 < y − x < k. The lower index 2 indicates partitions with no part of size three or more. We use the identity to give quick proofs of the closed formulae ...
متن کاملRational Associahedra and Noncrossing Partitions
Each positive rational number x > 0 can be written uniquely as x = a/(b− a) for coprime positive integers 0 < a < b. We will identify x with the pair (a, b). In this paper we define for each positive rational x > 0 a simplicial complex Ass(x) = Ass(a, b) called the rational associahedron. It is a pure simplicial complex of dimension a − 2, and its maximal faces are counted by the rational Catal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The American Mathematical Monthly
سال: 2006
ISSN: 0002-9890,1930-0972
DOI: 10.1080/00029890.2006.11920342